

1.1 Let \mathcal{M} be a differentiable manifold of dimension m . Assume that $\mathcal{U}, \mathcal{U}'$ are two open subsets of \mathcal{M} with $\mathcal{U} \cap \mathcal{U}' \neq \emptyset$, equipped with coordinate charts $\phi : \mathcal{U} \rightarrow \mathcal{V} \subset \mathbb{R}^m$ and $\phi' : \mathcal{U}' \rightarrow \mathcal{V}' \subset \mathbb{R}^m$. Let (x^1, \dots, x^m) and (y^1, \dots, y^m) be the corresponding coordinates on \mathcal{U} and \mathcal{U}' , respectively; recall that each coordinate function $x^i : \mathcal{U} \rightarrow \mathbb{R}$ is defined so that

$$x^i = \bar{x}^i \circ \phi,$$

where $\bar{x}^i : \mathbb{R}^m \rightarrow \mathbb{R}$ is the projection on the i -th coordinate (equivalently, for any $q \in \mathcal{U}$, $x^i(q)$ is equal to the i -th component of the vector $\phi(q) \in \mathbb{R}^m$); similarly for y^i (with ϕ' in place of ϕ).

(a) Prove that the functions

$$\tilde{y}^i = y^i \circ \phi^{-1}, \quad i = 1, \dots, m$$

are differentiable functions on $\phi(\mathcal{U} \cap \mathcal{U}') \subset \mathbb{R}^m$ (*Hint: Use the assumption on the smoothness of transition functions on \mathcal{M}*). Show also that

$$\tilde{y}^i(x^1(p), \dots, x^m(p)) = y^i(p) \quad \text{for all } p \in \mathcal{U} \cap \mathcal{U}'$$

Remark. We usually refer to the function \tilde{y}^i as the expression of the coordinate function y^i with respect to the (x^1, \dots, x^m) coordinate system on $\mathcal{U} \cap \mathcal{U}'$.

(b) Show that the coordinate tangent vectors $\left\{ \frac{\partial}{\partial x^i} \right\}_{i=1}^m$ and $\left\{ \frac{\partial}{\partial y^i} \right\}_{i=1}^m$ satisfy at every point on $\mathcal{U} \cap \mathcal{U}'$

$$\frac{\partial}{\partial x^i} = \partial_i \tilde{y}^j \circ \phi \cdot \frac{\partial}{\partial y^j}.$$

Find a similar relation between the coordinate covectors $\{dx^i\}_{i=1}^m$ and $\{dy^i\}_{i=1}^m$.

1.2 Construct a smooth atlas (not necessarily maximal) on the unit sphere

$$\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} : \|x\| = 1\}.$$

1.3 Let (\mathcal{M}, g) be a Riemannian manifold and let (x^1, \dots, x^n) and (y^1, \dots, y^n) be two systems of coordinates around a point $p \in \mathcal{M}$. Let g_{ij} be the components of the metric g in the (x^1, \dots, x^n) coordinates, while \tilde{g}_{ij} are the components of g with respect to (y^1, \dots, y^n) . Show that

$$\tilde{g}_{ij} = \frac{\partial x^a}{\partial y^i} \frac{\partial x^b}{\partial y^j} g_{ab},$$

where, in the above expressions, the coordinate functions x^γ are considered as functions of (y^1, \dots, y^n) (see Ex. 1.1). Express the Euclidean metric on $\mathbb{R}^2 \setminus \{0\}$ in polar coordinates.

1.4 Let \mathcal{M} be a differentiable manifold and $F : \mathcal{M} \rightarrow \mathbb{R}^N$ be an immersion. The metric g induced on \mathcal{M} by the Euclidean metric on \mathbb{R}^N is defined by the relation

$$g(X, Y) \doteq \langle dF(X), dF(Y) \rangle_{\mathbb{R}^N} \quad \text{for all tangent vectors } X, Y \text{ on } \mathcal{M}.$$

(a) Show that, in any local coordinate system (x^1, \dots, x^n) on \mathcal{M} , the components of g are given by

$$g_{ij} = \delta_{ab} \frac{\partial F^a}{\partial x^i} \frac{\partial F^b}{\partial x^j}.$$

(b) (**Surface of revolution**) Let $\gamma : (0, 1) \rightarrow \mathbb{R}^2$ be a smooth curve parametrized with unit speed (i.e. $\langle \frac{d\gamma}{du}(u), \frac{d\gamma}{du}(u) \rangle = 1$). Let $\gamma(u) = (X(u), Y(u))$ be the representation of γ in the standard Cartesian coordinates on \mathbb{R}^2 and assume that $X(u) > 0$ for all $u \in (0, 1)$. Consider the surface of revolution $\mathcal{S} \subset \mathbb{R}^3$ obtained by rotating the curve γ around the y-axis; this surface is parametrized by $(u, \theta) \in (0, 1) \times [0, 2\pi)$ via the map

$$\Psi(u, \theta) = (X(u) \cos \theta, Y(u), X(u) \sin \theta).$$

Express the induced metric on \mathcal{S} from the Euclidean metric on \mathbb{R}^3 in the (u, θ) coordinates.

1.5 Let (\mathcal{M}, g) be a Riemannian manifold and x^1, \dots, x^n a system of local coordinates on an open subset $U \subset \mathcal{M}$ associated to a coordinate chart $\phi : U \rightarrow \mathbb{R}^n$. Show that the volume

$$\text{Vol}(U) = \int_{\phi(U)} \sqrt{\det(g_{ij})} \, dx^1 \dots dx^n$$

is independent of the choice of coordinates.